

CLOSER conference

The importance of early years, childhood and adolescence: Evidence from longitudinal studies

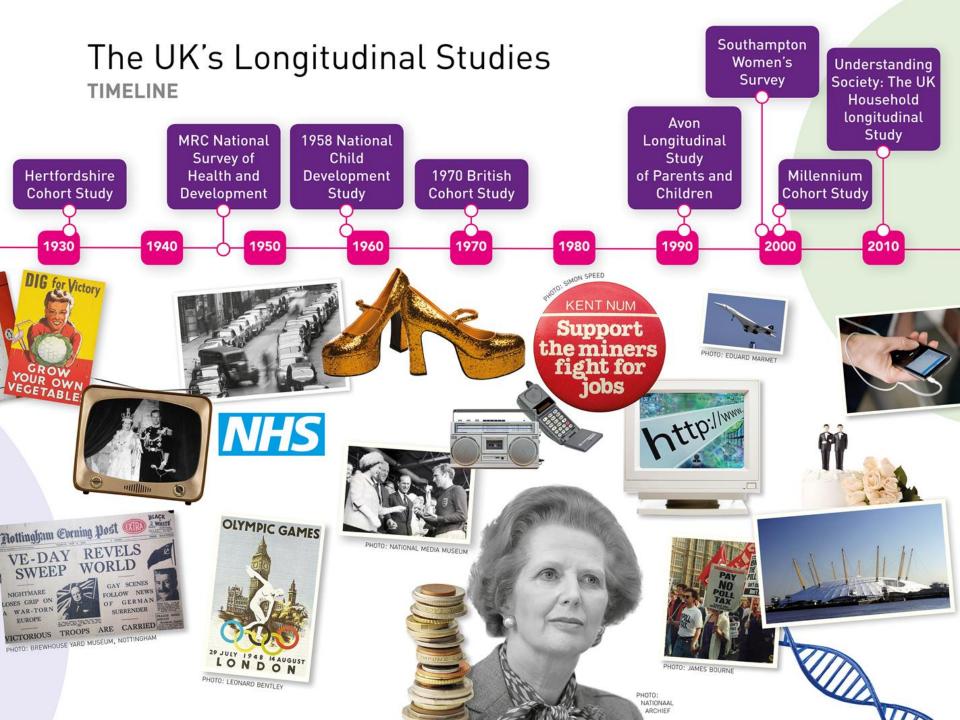
British Library Conference Centre Monday 30 November

@CLOSER_UK #CLOSERconf

CLOSER website: <u>www.closer.ac.uk</u> CLOSER Discovery: <u>www.discovery.closer.ac.uk</u>

Understanding early life: resources for research

Alison Park, Director CLOSER



About CLOSER

- Aims to maximise the use, value and impact of the UK's longitudinal studies
- Consortium of longitudinal studies, the British Library and the UK Data Service
- ESRC and MRC funding

Key areas of work

- Demonstration projects on data harmonisation and data linkage
- Online resources CLOSER Discovery
- Training and capacity building activities

Key areas of work

- Demonstration projects on data harmonisation and data linkage
- Online resources CLOSER Discovery
- Training and capacity building activities

Data harmonisation

Height, weight and BMI Rebecca Hardy, UCL

Socio-economic status and qualifications Claire Crawford, Warwick & IFS

Susan Ring, Bristol

Visual function Jugnoo Rahi, UCL

Data harmonisation

Childhood environment and adult wellbeing Mai Stafford, UCL

Review of methods for determining pubertal status Janis Baird and Hazel Inskip, Southampton

Exploiting CLOSER biomarker data Meena Kumari, Essex

Key areas of work

- Demonstration projects on data harmonisation and data linkage
- Online resources CLOSER Discovery
- Training and capacity building activities

Data linkage

Linkage to administrative data Lorraine Dearden, UCL

Linkage to geographic data Chris Dibben, Edinburgh

Linkage to health data Michaela Benzeval, Essex

Data linkage in cohorts/longitudinal studies Andy Boyd, Bristol

Key areas of work

- Demonstration projects on data harmonisation and data linkage
- Online resources CLOSER Discovery
- Training and capacity building activities

CLOSER Discovery

What is it?

- An online resource that helps you find and appraise study content
- Beta launch today

Why do we need it?

To find out what has been asked on which study and decide whether it meets your needs

Enhancement Resources

CLOSER Discovery

What can I do with it?

- Search for topics, questions, variables
- Explore the context of a question or variable (where, when, how many?)
- Save your results
- Find out how to access data

CLOSER Discovery 🛱	Home Search Explore Basket o Admin			🕄 Help 🗸 👤 w.poynter@ucl.ac.uk 🗸
	Home			
	Welcome			
	CLOSER Discovery is an online resource that enables researche longitudinal studies. CLOSER Discovery is currently in beta te to best meet the needs of its users. To find out more about CLOSER Discovery visit the CLOSER w System Status: Beta testing	sting . We need your feedback to help us shape this resource		
	Search			
	Search			MRC
	(J) 8 Studies	33 Sweeps	27,302 Variables	77 Instruments
	2 12,047 Questions			
	Copyright © 2015 CLOSER. View licence agreement.			

Search

pregnancy smoking Q Sort by: Alphabetical More
Item types: All Query: pregnancy smoking
Results 1 to 6 of 6 (0.0610032 seconds)
🔄 🏤 N639
o Ma's smoking after mth 4 of pregnancy Study: <u>National Child Development Study</u> / Sweep: <u>Perinatal Mortality Survey</u> / Dataset: <u>Perinatal Mortality Study Dataset</u>
🔄 🏤 N503
o <mark>Smoking</mark> during pregnancy
Study: National Child Development Study / Sweep: Perinatal Mortality Survey / Dataset: Perinatal Mortality Study Dataset
`₩ A3 N502
o <mark>Smoking</mark> prior to pregnancy
Study: National Child Development Study / Sweep: Perinatal Mortality Survey / Dataset: Perinatal Mortality Study Dataset

Name N537

Label O Was mum at sch. after min.leaving age

Dataset Perinatal Mortality Study Dataset

-1Dont Know111Did not stay-25+22Did not stay-24-43Did stay-25 plus8264Did stay-24 under3165Did not stay36336Did stay at sch.28725+min.age 14yrs0				
1Did not stay-25+22Did not stay-24-43Did stay-25 plus8264Did stay-24under3165Did not stay36336Did stay at sch.28725+min.age 14yrs0	Value	Label	Frequency	
2Did not stay-24-43Did stay-25 plus8264Did stay-24under3165Did not stay36336Did stay at sch.28725+min.age 14yrs0	-1	Dont Know	11	
3Did stay-25 plus8264Did stay-24under3165Did not stay36336Did stay at sch.28725+min.age 14yrs0	1	Did not stay-25+	2	
4Did stay-24under3165Did not stay36336Did stay at sch.28725+min.age 14yrs0	2	Did not stay-24-	4	
5Did not stay36336Did stay at sch.28725+min.age 14yrs0	3	Did stay-25 plus	826	
6Did stay at sch.28725+min.age 14yrs0	4	Did stay-24under	316	
7 25+min.age 14yrs 0	5	Did not stay	3633	
	6	Did stay at sch.	28	
8 24-min.age 15yrs 0	7	25+min.age 14yrs	0	
	8	24-min.age 15yrs	0	

Min	Max	Mean
1	6	4.59

CLOSER discovery	÷	Home Search Explore Basket	😮 Help - 👤 -
MANAGE Create a Basket	+	Basket ♠ Home / Baskets	
		This is your active basket.	
Basket	E	Download This basket contains 3 items. Download PDF Download DDI 3.2	Manage Rename Remove
		Variables (2)	Questions (1)
		 A0259 Foetal Heart Rate During Labour Q2340 S4 TS Mental illness / depression 	qi_en_43_xi en 43(xi) Do these specific problem(s) apply to this child? Mental illness / depression<

Today's launch

- A beta launch
- Please give us feedback!
- Partial content, largely early years focus
- Further content and functionality added 2016 and 2017
- Short demos over lunch (@ 12.50, 1.15 and 1.25)

Key areas of work

- Demonstration projects on data harmonisation and data linkage
- Online resources CLOSER Discovery
- Training and capacity building activities

Training and capacity building

Workshops and seminars

- Recent: data harmonisation, data management
- Forthcoming: geographical variables, use of biological samples, participant engagement (Jan 29th)
- Regular methodology seminar series

Training and capacity building

Online resources @ www.closer.ac.uk

- Content from seminars and events
- Undergraduate and postgraduate teaching resources

WORKSHOP

9 2015

Cross-cohort research: Opportunities, challenges and examples

The rationale behind this event was the belief in the value of cross-cohort comparisons – that is, the ability to compare findings from different cohort studies. Such comparisons allow the findings from one study to be tested and replicated, and more robust conclusions to be reached. Comparison of longitudinal studies that differ by birth cohort or country provide opportunities for understanding the influence of different contexts. Harmonisation of data facilitates pooling of data across multiple studies to increase statistical power and allows cross-cohort comparisons of results in different contexts.

Harmonising data in order to make valid comparisons between studies is challenging. The same can be true of harmonising data across different waves of the *same* study (for example, when measurement approaches and instruments change). There is no well-established standard procedure for the retrospective harmonisation of data. There are also different approaches to the analysis of cross-cohort data – from pooling in a single dataset, or a 2-step meta-analysis, to coordinated independent analyses of the different datasets.

Thank you

<u>www.closer.ac.uk</u> <u>www.discovery.ac.uk</u> <u>a.park@ioe.ac.uk</u>

Thank you

<u>www.closer.ac.uk</u> <u>www.discovery.ac.uk</u> <u>a.park@ioe.ac.uk</u>

Tea/coffee break and poster session

11:00-11:30

@CLOSER_UK #CLOSERconf

CLOSER website: <u>www.closer.ac.uk</u> CLOSER Discovery: <u>www.discovery.closer.ac.uk</u>

Breakout sessions: Physical health 1 Auditorium

11:30-12:50

@CLOSER_UK #CLOSERconf

CLOSER website: <u>www.closer.ac.uk</u> CLOSER Discovery: <u>www.discovery.closer.ac.uk</u>

Further evidence that infant growth influences proximal femoral geometry in adulthood: the Hertfordshire Cohort Study

Lifecourse Epidemioloa

AE Litwic, M Clynes, H Denison, KA Jameson, A Aihie Sayer, P Taylor, C Cooper, EM Dennison

MRC Lifecourse Epidemiology Unit, University of Southampton, UK

Overview

- Background
- Hertfordshire Cohort Study
- Methods
- Results
- Discussion

Background

- Hip fracture is the most significant complication of osteoporosis in terms of mortality, long-term disability and decreased quality of life.
- Personal impact of hip fracture
 - 50% do not live independently
 - 20% die within 12 months
- Socioeconomic cost
 - 75,000 hip fractures/year
 - 20% orthopaedic bed occupancy
 - Annual cost £2 bilion

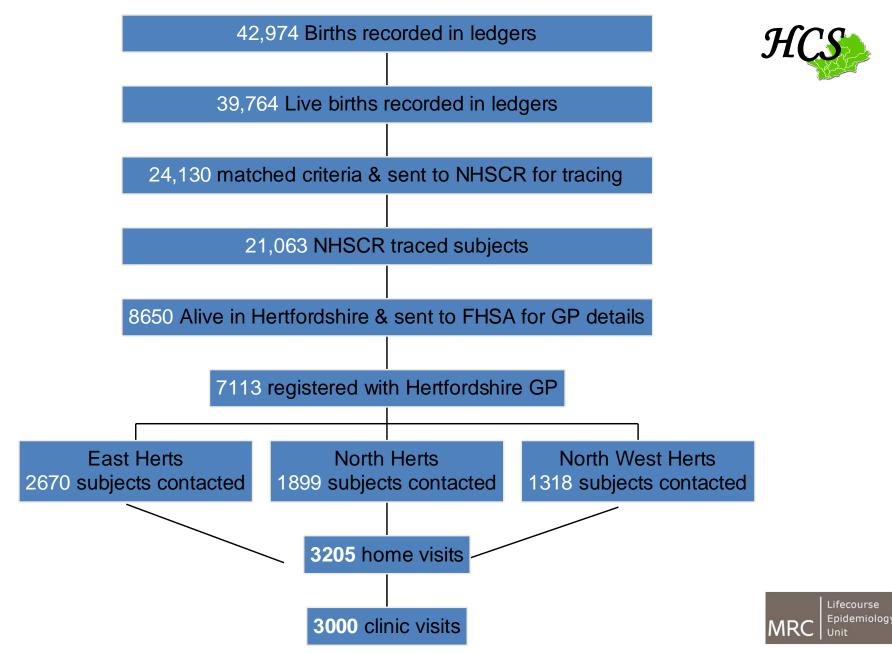
Background

- Bone mineral density (BMD) is a well-recognised strong predictor of osteoporotic fracture.
- Proximal femur geometry (PFG) parameters have also been proposed to be predictive of mechanical strength and femoral neck fracture risk.

Early life determinants of osteoporotic fracture

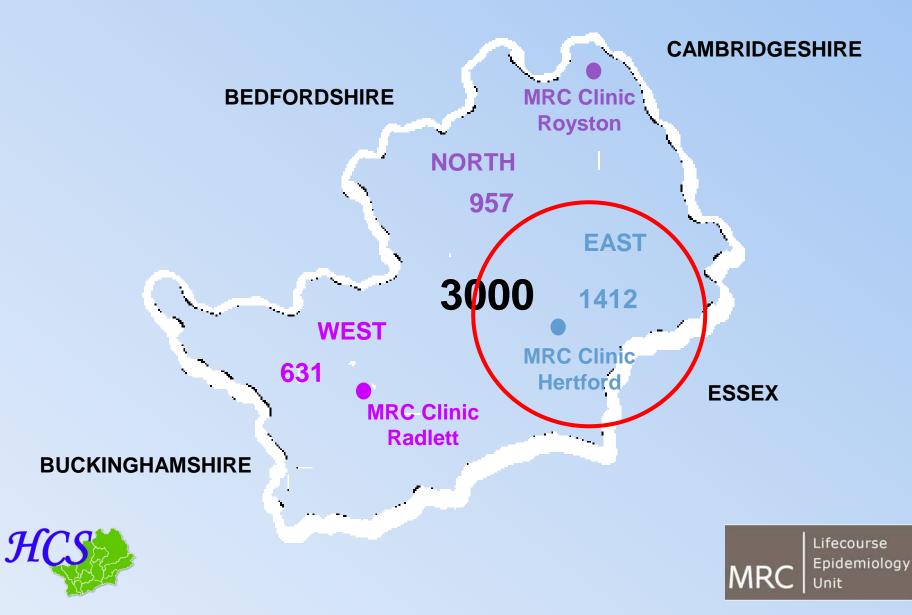
- There is accumulating evidence that fracture risk and adult bone mass might be partly dependent on growth during intrauterine and early life.
- It has been suggested that poor growth during early life is associated with altered femoral geometry as assessed by DXA in older age.

The Hertfordshire Cohort Study


The Hertfordshire Records

- Birth weight
- Illnesses/development during infancy and early childhood
- Weight at 1 year
- Method of infant feeding

Weight at Birth.	Weight 1st Year	Food.	No. of Visits.		ndition, an Health		
			·	w	Y.	D.	ĩ
84 (13	24 2 (13	ß.	11				
Halth	o well	divelope	1. Bu	chland	School .	Card	to s.
1			12				
			Hadham .				
			11				
	and the second second		fontanelle still				
82	22	B.B.	9	ey "	4	4	10
Scalth	y + .	round.	Buch	Eland	School .	6	ard.


Hertfordshire Cohort Study Population

Hertfordshire Cohort Study

Hertfordshire Cohort Study

Methods

- Hertfordshire Cohort Study participants
- n = 488 men; 431 women
- Age range 59 71 years

Methods

- Health questionnaire information collected
- DXA scan
- Hip axis length and other proximal femur geometry parameters were extracted from scans using standard Hologic software.

Study Participants

Characteristic	Men (n= 488)	Women (n=431)	p
Age (yrs)	64.8(2.5)	66.3(2.6)	<0.001
BMI (kg/m²) ¹	26.6(1.1)	26.8(1.2)	0.497
Dietary calcium intake (mg/day) ¹	1214(1.3)	1087(1.3)	<0.001
Activity score	64.1(14.8)	61.3(14.7)	0.004
Birth weight(kg)	3.5(0.6)	3.4(0.5)	<0.001
Weight at 1year(kg)	10.2(1.1)	9.7(1.0)	<0.001

¹Geometric mean and SD *P* values contrast men and women

Study Participants

Characteristic	Men (n= 488)	Women (n=431)	р
	N (%)	N (%)	
Smoker status			<0.001
Current	71(14.5)	41(9.5)	
Ex-smoker	252(51.6)	121(28.1)	
Never	165(33.8)	268(62.3)	
	Median (IQR)	Median (IQR)	
Alcohol consumption (units/week)	9.5(2.5-21.6)	1.5(0.0-6.0)	<0.001

Femoral geometry assessed by DXA

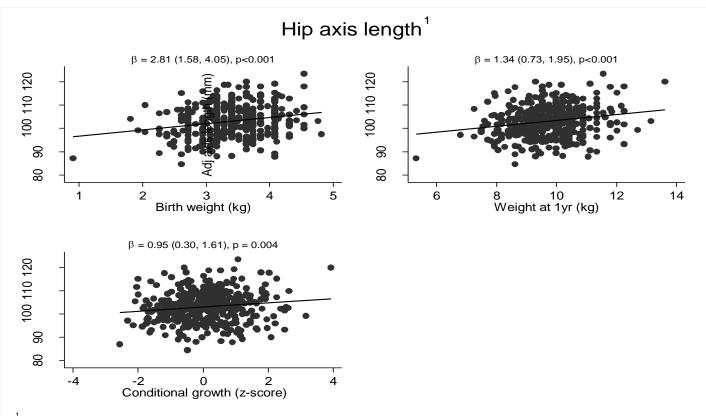
	Men (n= 488)	Women (n=431)	p
BMD total hip (g/cm ²)	1.04(0.13)	0.9(0.13)	<0.001
Hip axis length (cm)	121.2 (6.3)	105.1 (6.7)	<0.001
Narrow neck			
CSMI (cm⁴)	4.4(1.0)	2.6(0.7)	<0.001
width (cm)	3.8(0.2)	3.3(0.3)	<0.001
ED (cm)	3.4(0.2)	3.0(0.3)	<0.001
ACT (cm)	0.19(0.03)	0.17(0.03)	<0.001
СМР	0.4(0.0)	0.4(0.0)	< 0.001
Section modulus (cm ³)	2.1(0.4)	1.4(0.3)	< 0.001
Buckling ratio	11.1(2.3)	11.5(3.0)	0.016

^p p-value for the difference between men and women

Key: CSMI, cross sectional moment of inertia; ED, endocortical diameter; ACT, average cortical thickness; CMP, centre of mass position

Association between proximal femur DXA variables and birth weight, weight at 1-year and conditional growth^a

		Birth weight			v	Veight at 1 y	ear	Conditional growth		
Variables	β	95%CI	p-value		β	95%CI	p-value		β 95%C	p-value
Hip axis length (mm)	2.81	1.58, 4.05	<0.001		3.81	2.06,7.02	<0.001	0.9	5 0.30, 1.61	0.004
Narrow neck										
cross sectional moment of inertia (cm ⁴)	0.24	0.11, 0.36	<0.001		0.15	0.09, 0.21	<0.001	0.2	2 0.06, 0.19	<0.001
width (cm)	0.11	0.06, 0.17	<0.001		0.07	0.05, 0.10	<0.001	0.0	6 0.03, 0.09	<0.001
endocortical diameter (cm)	0.11	0.05, 0.17	<0.001		0.08	0.05, 0.10	<0.001	0.0	6 0.03, 0.10	<0.001
average cortical thickness (cm)	0.00	-0.01, 0.01	0.901		0.00	-0.00, 0.00	0.823	0.0	0 -0.00, 0.00	0.764
profile centre distance (cm)	0.05	0.01, 0.09	0.008		0.04	0.02, 0.05	<0.001	0.0	3 0.01, 0.05	0.002
centre of mass position	0.00	-0.01, 0.01	0.955		0.00	-0.00, 0.00	0.842	0.0	0 -0.00, 0.00	0.805
section modulus (cm ³)	0.08	0.03, 0.13	0.004		0.05	0.02, 0.07	<0.001	0.0	4 0.01, 0.07	0.007
buckling ratio	0.35	-0.18, 0.88	0.195		0.33	0.07, 0.59	0.014	0.3	1 0.03, 0.58	0.030

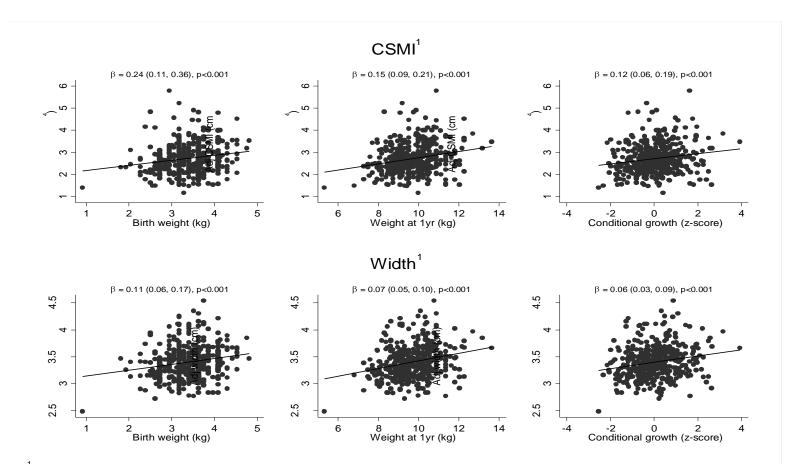

^a adjustment for age, BMI, social class, physical activity, cigarette and alcohol consumption, and dietary calcium intake, and years since menopause and HRT use in women

Association between proximal femur DXA variables and birth weight, weight at 1-year and conditional growth^a

	Variables	Birth weight			v	Weight at 1 year			Conditional growth		
	Variables	β	95%CI	p-value	β	95%CI	p-value	β	95%CI	p-value	
<	Hip axis length (mm)	2.81	1.58, 4.05	<0.001	3.81	2.06,7.02	<0.001	0.95	0.30, 1.61	0.004	
	Narrow neck										
	cross sectional moment of inertia (cm ⁴)	0.24	0.11, 0.36	<0.001	0.15	0.09, 0.21	<0.001	0.12	0.06, 0.19	<0.001	
	width (cm)	0.11	0.06, 0.17	<0.001	0.07	0.05, 0.10	<0.001	0.06	0.03, 0.09	<0.001	
	endocortical diameter (cm)	0.11	0.05, 0.17	<0.001	0.08	0.05, 0.10	<0.001	0.06	0.03, 0.10	<0.001	
	average cortical thickness (cm)	0.00	-0.01, 0.01	0.901	0.00	-0.00, 0.00	0.823	0.00	-0.00, 0.00	0.764	
	profile centre distance (cm)	0.05	0.01, 0.09	0.008	0.04	0.02, 0.05	<0.001	0.03	0.01, 0.05	0.002	
	centre of mass position	0.00	-0.01, 0.01	0.955	0.00	-0.00, 0.00	0.842	0.00	-0.00, 0.00	0.805	
	section modulus (cm ³)	0.08	0.03, 0.13	0.004	0.05	0.02, 0.07	<0.001	0.04	0.01, 0.07	0.007	
	buckling ratio	0.35	-0.18, 0.88	0.195	0.33	0.07, 0.59	0.014	0.31	0.03, 0.58	0.030	

^a adjustment for age, BMI, social class, physical activity, cigarette and alcohol consumption, and dietary calcium intake, and years since menopause and HRT use in women

Association between Hip axis length and birth weight, weight at 1-year and conditional growth¹


¹Adjusted for age, BMI, social class, physical activity, smoker status, alcohol consumption, dietary calcium intake, years since menopause and HRT use

Association between proximal femur DXA variables and birth weight, weight at 1-year and conditional growth^a

Variables	Birth weight			١	Veight at 1 y	ear	Conditional growth		
Variables	β	95%CI	p-value	β	95%CI	p-value	β	95%CI	p-value
Hip axis length (mm)	2.81	1.58, 4.05	<0.001	3.81	2.06,7.02	<0.001	0.95	0.30, 1.61	0.004
Narrow neck									
cross sectional moment of inertia (cm ⁴)	0.24	0.11, 0.36	<0.001	0.15	0.09, 0.21	<0.001	0.12	0.06, 0.19	<0.001
width (cm)	0.11	0.06, 0.17	<0.001	0.07	0.05, 0.10	<0.001	0.06	0.03, 0.09	<0.001
endocortical diameter (cm)	0.11	0.05, 0.17	<0.001	0.08	0.05, 0.10	<0.001	0.06	0.03, 0.10	<0.001
average cortical thickness (cm)	0.00	-0.01, 0.01	0.901	0.00	-0.00, 0.00	0.823	0.00	-0.00, 0.00	0.764
profile centre distance (cm)	0.05	0.01, 0.09	0.008	0.04	0.02, 0.05	<0.001	0.03	0.01, 0.05	0.002
centre of mass position	0.00	-0.01, 0.01	0.955	0.00	-0.00, 0.00	0.842	0.00	-0.00, 0.00	0.805
section modulus (cm ³)	0.08	0.03, 0.13	0.004	0.05	0.02, 0.07	<0.001	0.04	0.01, 0.07	0.007
buckling ratio	0.35	-0.18, 0.88	0.195	0.33	0.07, 0.59	0.014	0.31	0.03, 0.58	0.030

^a adjustment for age, BMI, social class, physical activity, cigarette and alcohol consumption, and dietary calcium intake, and years since menopause and HRT use in women

Association between CSMI, width and birth weight, weight at 1-year and conditional growth^a

^{Adjusted} for age, BMI, social class, physical activity, smoker status, alcohol consumption, dietary calcium intake, years since menopause and HRT use

Discussion

- The sample investigated is generally representative of the UK population
- DXA images were used for assessment of proximal femoral geometry
- Detailed information on gestational age at birth not available

Conclusions

- We demonstrated further evidence that early growth is an important predictor of proximal femoral geometry in late adulthood.
- These observations suggest a possible mechanism for the previous observation that early growth is a risk factor for hip fracture in late adulthood.

Acknowledgements

Co-authors

Elaine Dennison, Cyrus Cooper, Karen Jameson, Mark Edawrds, Aihie Sayer, Pat Taylor and Hayley Dennison

Study Participants

Further evidence that infant growth influences proximal femoral geometry in adulthood: the Hertfordshire Cohort Study

Lifecourse Epidemioloa

A Litwic, M Clynes, H Denison, K A Jameson, A Aihie Sayer, P Taylor, C Cooper, E Dennison

MRC Lifecourse Epidemiology Unit, University of Southampton, UK

Lunch

CLOSER search platform demonstrations and poster session

12:50-14:00

@CLOSER_UK #CLOSERconf

CLOSER website: <u>www.closer.ac.uk</u> CLOSER Discovery: <u>www.discovery.closer.ac.uk</u>

