Age Period Cohort models: the identification problem and what to do about it

Andrew Bell
Sheffield Methods Institute, University of Sheffield, UK
@andrewjdbell
Outline

• APC effects
• The identification problem
• What is and isn’t a problem
• What *can* we do
What are APC effects
Age effects

• What happens as you get older?
 • Your health declines
 • Your happiness increases / decreases
 • You become more religious
 • You become more conservative

Or: what happens at specific ages?
• Midlife crisis around 45
• Low self esteem between ages 11 and 15
What are APC effects
Period effects

Things gradually improve... somehow...
• Health services improve gradually and incrementally, for all age groups
• Everyone becomes less likely to go to church
• Living conditions improve for everyone

A response to a specific event that effects everyone
• A recession makes everyone poorer
• A particular government policy makes people less healthy
• A cold winter, or war, increases mortality
What are APC effects
Cohort effects

Things gradually improve... by generation replacement...
• Health services for infants improve, and generations take those benefits on for the rest of their lives
• The new generation are less likely to go to church
• Living conditions improve for everyone

A response to a specific event that effects everyone
• A recession makes everyone born in that recession poorer for the rest of their lives
• People coming of age, politically, react negatively to a particular government
• A cold winter, or war, harms childrens’ development
What are APC effects (Suzuki 2012, 452)

• A: I can’t seem to shake off this tired feeling. Guess I’m just getting old. [Age effect]
• B: Do you think it’s stress? Business is down this year, and you’ve let your fatigue build up. [Period effect]
• A: Maybe. What about you?
• B: Actually, I’m exhausted too! My body feels really heavy.
• A: You’re kidding. You’re still young. I could work all day long when I was your age.
• B: Oh, really?
• A: Yeah, young people these days are quick to whine. We were not like that. [Cohort effect]
At least 5 a day
Are you getting enough?

Fruits and Veggies
Good for Life

Fudge

519-376-9420 or 1-800-263-3455 www.publichealthgreybruce.on.ca
Where the lines blur

Thing that changes culture (an advert, a product, a trend...)

Cohort effects

Children see it and are affected by it for the rest of their lives

Adults pass it on to their children
- How they interact
- What they value

Period effects

Adults see it and are all affected by it equally

Children pass it onto their parents and so it disseminates through the whole of society
- Facebook
- Pressure to go to McDonalds for lunch

Change in culture
The Identification Problem

Age = Period – Cohort

“the term [confounded] is not used in the traditional design sense of experimentally confounded but in the stronger sense of logically or mathematically confounded” (Goldstein, 1979, 19)
The Identification Problem

Health = (1 * Age) + (1 * Period) + (1 * Cohort)
Health = (2 * Age) + (2 * Cohort)
Health = (0 * Age) + (2 * Period)

- All will produce exactly the same outcome variable
- Given that dataset, there is no logical way of telling which DGP created it
- Exact collinearity from putting all three into a regression model – model will not run.
- Grouping of one of APC breaks this collinearity, but produces arbitrary results (that depend on the chosen grouping)
What does this mean?

- Cannot hold age and cohort constant and vary period (without time travel – Suzuki 2012)

- Glenn 2005: “One of the most bizarre instances in the history of science of repeated attempts to do something that is logically impossible”

- If you have age in your model, you also have period and cohort, and vice versa (whether you like it or not)
What is and isn’t a problem here

- Only applied to linear components
- Non-linear components are unaffected usually in practice
- BUT non-linear components mean very different things depending on linear components

\[
\begin{align*}
 H_1 &= 1 \cdot A - 0.1 \cdot A^2 + 1 \cdot P + 1 \cdot C \\
 H_2 &= 2 \cdot A - 0.1 \cdot A^2 + 2 \cdot C \\
 H_3 &= 0 \cdot A - 0.1 \cdot A^2 + 2 \cdot P
\end{align*}
\]
Various proposed solutions

• Arbitrary Constraints
• Hierarchical APC model
• Intrinsic Estimator
• Interactions
• Partial Least Squares
• ...

• In all cases, they have either not been tested rigorously enough, or they’ve been tested and shown not to work
• We know they can’t work!
What can we do (without constraints) #1

• We can identify non-linearities (that is: variation around any linear trends)
What can we do (without constraints) #1

- We can identify non-linearities (that is: variation around any linear trends)
What can we do (without constraints) #1

• We can identify non-linearities (that is: variation around any linear trends)

• But - these may mean different things depending on what the linear trend is...
What can we do (without constraints) #2

• Identify effects that vary with APC, rather than overall APC effects themselves – Winship and Harding approach
What can we do (without constraints) #3

• We can identify the ‘line of solutions’ (not necessarily that useful)
What can we do (with constraints)

• Make assumptions about linear part of age / period / cohort effects
• Effectively choosing the most plausible point on the line of solutions
• This needs to be a big assumption (eg period trend is flat)
• Smaller assumptions (eg 1990 is the same as 1991) are actually hiding a much bigger assumption – has a big effect on estimation
• Could use more than one assumption, and/or bounds
What can we do (with constraints)

• Make assumptions about linear part of
• Effectively choosing the most plausible
• This needs to be a big assumption (eg p
• Smaller assumptions (eg 1990 is the sar
 a much bigger assumption – has a big e
• Could use more than one assumption
What can we do (with constraints)

- Make assumptions about linear parts of age / period / cohort effects.
- Effectively choosing the most plausible point on the line of solutions.
- This needs to be a big assumption (e.g., period trend is flat).
- Smaller assumptions (e.g., 1990 is the same as 1991) are actually hiding a much bigger assumption – has a big effect on estimation.
- Could use more than one assumption.
Conclusions

- Age Period and Cohort effects can be important
- We need to take them, and the identification problem seriously, whilst acknowledging that it cannot be solved
- That involves making explicit assumptions (a wrong explicit assumption is better than a correct implicit assumption), and being honest about what our models can and cannot do
- Various visual and statistical methods – but all make assumptions or only consider non-linearities (that may be misleading
Some useful texts:

On Multilevel modelling and APC

On constraints and the line of solution

Thanks!

• Email: andrew.j.d.bell@sheffield.ac.uk
• Tweet: @andrewwjdbell

• Look out for a forthcoming book (due out some time next year)
 • Bell (ed.) Age, period and cohort effects: the identification problem and what to do about it. Routledge.