

Widening access to confidential data with the synthpop package

Gillian Raab

Administrative Data Research Centre – Scotland

Administrative Data Research Network

An ESRC Data Investment

Outline

Background to our project

- Context of longitudinal studies
- Synthpop package
- Features of the synthpop package
 - Methods of synthesising
 - Methods of evaluating how well the synthetic data correspond to the original

Final thoughts

Administrative Data Research Centre - Scotland | Gillian Raab, Closer meeting presentation January 2017

SYLLS project – from 2013

- To develop tools that can be used by staff with access to the original data to produce synthetic data extracts that can be made available more freely than the original data.
- Researchers can explore the synthetic data and develop analysis code
- > Teaching data sets are another use
- Originally we worked for the staff at the Scottish Longitudinal Study – and we still do
- But we now have a wider remit within ADRN-S to work with all staff making administrative data available

UK longitudinal studies

ONS-LS, SLS, NILS

- Censuses linked and to other data sets
- Users apply for an extract
- Need to analyse it in a safe setting or by sending in code to be analysed by staff

SYLLS project – from 2013

- To develop methods and tools that LS-DSU staff can use to produce synthetic data extracts that can be supplied to users to analyse on their own computers
- Code run on the synthetic data can then be run on the original LS data for publication

Current situation

Longitudinal studies

- SLS Permissions obtained to release synthetic extracts and first examples are coming through
- NILS Almost
- ONS-LS Unsure

BUT

The synthpop package is available and is being used by others

Administrative Data Research Centre - Scotland | Gillian Raab, Closer meeting presentation January 2017

A software tool for producing synthetic versions of sensitive microdata

R package synthpop version 1.3-0

http://cran.r-project.org/package=synthpop

Completely synthetic data

What is it?

Data that resembles the original data

But contains no records that correspond to real individuals or other units

History

Originally proposed for disclosure control over 20 years ago Many theoretical papers from the early 2000's Real applications started to appear a few years later US Bureau of the Census Others in Canada, New Zealand, Germany

Disclosure risk

Not zero, but evaluations of applications suggest it is low.

The LS data are released only to accredited researchers

Perceived risk may be as important as actual risk

Observed (input)

units only

Sex	Age	Education	Marita status		ncome	Life satis	faction			
FEMALE	57	VOCATIONAL/GRAMMAR	MARRI	IED	800		PLEASED			
MALE	41	SECONDARY	UNMARRI	IED	1500		MIXED			
FEMALE	18	VOCATIONAL/GRAMMAR	UNMARRIED		NA	PLEASED				
FEMALE	78	PRIMARY/NO EDUCATION	WIDOW	/ED	900		MIXED			
FEMALE	54	VOCATIONAL/GRAMMAR	MARRI	IED	1500	MOSTLY S	SATISFIED			
MALE	20	SECONDARY	UNMARRI	IED	-8		PLEASED			
FEMALE	39	SECONDARY	MARRI	IED	2000	MOSTLY S	SATISFIED			
MALE	39	SECONDARY	MARRI	IED	1197		MIXED		C	
FEMALE	38	VOCATIONAL/GRAMMAR	MARRI	IED	NA	MOSTLY DISS	SATISFIED		Synth	etic (output)
FEMALE	73	VOCATIONAL/GRAMMAR	Ser	A	Ex	lucation	Mar	ital	Theomo	Life esticfaction
FEMALE	54	SECONDARY	Sex	Age	EC	lucation	sta	tus	Income	Life satisfaction
MALE	30	VOCATIONAL/GRAMMAR	MALE	81	PRIMARY	//NO EDUCATI	ON MA	RRIED	2100	PLEASED
MALE	68	SECONDARY	MALE	54	VOCATI	IONAL/GRAMM	IAR MA	RRIED	1700	PLEASED
MALE	61	PRIMARY/NO EDUCATION	FEMALE	32	VOCATI	IONAL/GRAMM	IAR DIV	DRCED	870	MIXED
			FEMALE	98	PRIMARY	//NO EDUCATI	ON MA	RRIED	800	MOSTLY DISSATISFIED
			FEMALE	50	PRIMARY	//NO EDUCATI	ON MA	RRIED	NA	MOSTLY SATISFIED
Data that look			FEMALE	37	VOCATI	IONAL/GRAMM	IAR MA	RRIED	158	PLEASED
(structurally) like			MALE	28	VOCATI	IONAL/GRAMM	IAR	NA	1500	MOSTLY SATISFIED
			FEMALE	62	PRIMARY	//NO EDUCATI	ON MA	RRIED	830	MOSTLY SATISFIED
orig	l data but	MALE	78	PRIMARY	//NO EDUCATI	ON MA	RRIED	NA	PLEASED	
0		FEMALE	29		SECONDA	ARY MA	RRIED	580	MOSTLY SATISFIED	
contain artificial			MALE	59	PRIMARY	//NO EDUCATI	ON MA	RRIED	1300	MOSTLY SATISFIED

MOSTLY SATISFIED

1500

1350

-8

UNMARRIED

WIDOWED

MIXED

PLEASED

MALE 41 SECONDARY MALE 18 SECONDARY UNMARRIED

73 PRIMARY/NO EDUCATION

FEMALE

Creating synthetic data

Assumes some sort of model fits the data

Fit the model to the data Generate synthetic data from the fit to the model

In practice for real data

Build up from conditional distributions

Example

Start with first variable – fit a distribution– e.g. age Generate a sample from this distribution Model next variable e.g. sex predicted from age Generate simulated data from (sex | age) Model education and generate (education| age, sex) Generate simulated data from (occupation| sex,age)

First variable

observed

Second variable

Distribution(y2|y1)

observed

v1

Third variable

Distribution(y3|y1,y2)

Final step

Distribution(yn|y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,...yn-1)

Generating synthetic data: synthpop

Synthesis default parameters
 Mysynth1<-syn(data)

Or control how the data are synthesised

	1	2	3	4	5	6	7	8
Variable	age	sex	hh_occ1	mar	agegroup	pperroom	Hh_occ2	disability
Method	sample	logreg	cart	polyreg	~I(floor(age/10))	normrank	mymeth	ctree

Mysynth2<-syn(data, method=*meth*, predictor.matrix=*prmat*, visit.sequence=c(1,3:6,2,7:8),cont.na=list(age=-8,pperroom=-1), rules=list(mar = "age < 16"),values=list(mar="Single"), smoothing=list(pperroom="density"), polyreg.maxit=500, m =5, k=1000, proper=T, models=T, diagnostics=T, and more......

Practicalities

- Default parameters
 - \triangleright Use CART methods \checkmark
 - \triangleright Produce just a single synthetic data set \checkmark
 - \triangleright In the order of variables in the data set imes
 - Use all previously synthesised as predictors ×
 - \triangleright No specification of rules or checks imes
 - No smoothing continuous variables ×
 - No coding missing value indicators x
 - No stratification into subgroups x

Overview of **synthpop** functions

Utility measures – can only be used by the synthesiser

Specific measures: compare()

Individual variables or two way comparisons

Comparing model fits

General measures: utility.synds()

Based on propensity scores

Based on possibly multiway crosstabulations

Administrative Data Research Centre - Scotland | Gillian Raab, Closer meeting presentation January 2017

Comparing distributions (1)

presentation January 2017

Comparing distributions (2)

Bi-variate visualisation

Comparing results of fitted models

Coefficient

General utility measure

U_{gen} derived from a propensity score method to distinguish original and synthesised data.

Results depend on choice of model for propensity score Has a known χ^2 distribution if the synthesising model is correct.

Model	U _{gen}	U _{gen} /83	Influential variables
1 Parametric with square root normal for age	1,062	12.8	Age, ppreroom, mar, relat, parish
2 Parametric with Normal scores for age	293	3.54	Mar,relat,age, pperroom, parish

 U_{tab} can be used to follow these up.

U_{tab} for cross tabulations

 $U_{tab}\,$ also has a known χ^2 distribution if the synthesising model is correct.

Table	U _{tab}	df	Ratio
Age by marital status	29,560	24	1,232
Relationship to head of household by marital status	1,716	36	47.7

sdc() & statistical disclosure control

- **Data labelling:** label "false data"
- Removing replicated uniques: rm.replicated.uniques
- Bottom- and top-coding: recode.vars, bottom.top.coding, recode.exclude
- > At synthesis stage: smoothing, minbucket

```
sdc(syn.obj, real, label="false data",
    rm.replicated.uniques = TRUE,
    recode.vars = c("age","income"),
    bottom.top.coding = list(c(NA,85),c(NA,1500)))
```

Final thoughts

- We have provided some tools to create synthetic data
- Real data sets are complicated and large and there are still plenty problems to be overcome
- Larger problems concern persuading administrative data holders to allow the release of synthetic data
 - Hard to explain the process
 - Does not correspond to the usual methods (e.g. data swapping or top-coding) that are used by most data holders at present.
 - Formal disclosure control methods are not available
- But our public participation panel was very positive

Acknowledgements

- Other members of our team most especially to Beata Nowok who has done the bulk of the work in creating the package and to Chris Dibben from ADRN S who guides us
- We acknowledge the help of the staff of the SLS-DSU staff in implementing the use of the synthpop package to create user extracts.
- Gillian Raab is funded by the UK Economic and Social Research Council's Administrative Data Research Centre – Scotland, Economic and Social Research Centre Grant ES/L007487/1.

